SUCESIONES

1. Definiciones

Una **sucesión** es una función $f: \mathbb{N} \to \mathbb{R}$. Se denota comúnmente por (x_n) si el dominio de la sucesión es todo \mathbb{N} , *i.e.* $f(n) = x_n$ para todo $n \in \mathbb{N}$, o $(x_n)_{n=n_0}^{\infty}$ si el dominio es $\mathbb{N} \setminus \{1, 2, \dots, n_0 - 1\}$. La sucesión (y_k) es **subsucesión** de (x_n) si $y_k = f \circ g(k)$ donde $g: \mathbb{N} \to \mathbb{N}$ es creciente estricta.

Decimos que la sucesión (x_n) es:

- a) Creciente (decreciente) si $x_n \leq x_{n+1}$, $(x_n \geq x_{n+1})$ para $n \in \mathbb{N}$ y estríctamente creciente (decreciente) cuando la desigualdad es estricta.
- b) Constante si existe $C \in \mathbb{R}$ tal que $x_n = C$ para toda $n \in \mathbb{N}$.
- c) Acotada superiormente (inferiormente) si existe $C \in \mathbb{R}$ tal que $x_n \leq C$, $(x_n \geq C)$ para toda $n \in \mathbb{N}$.
- d) Acotada si es acotada inferior y superiormente.
- e) Convergente a $\alpha \in \mathbb{R}$ si para toda $\epsilon > 0$ existe $N \in \mathbb{N}$ tal que $|x_n \alpha| < \epsilon$ si $n \geq N$. Se denota por lím $x_n = \alpha$.
- f) nula si es convergente a cero.
- g) Divergente a ∞ $(-\infty)$ si para toda M > 0 existe $N \in \mathbb{N}$ tal que $x_n > M$ $(x_n < -M)$ si $n \ge N$. se denota por $\lim x_n = \infty$.
- h) Cauchy si para toda $\epsilon > 0$ existe $N \in \mathbb{N}$ tal que $|x_n x_m| < \epsilon$ si $n, m \ge N$.

2. Resultados sobre convergencia y divergencia

- **P 1.** (x_n) acotada si y sólo si existe K > 0 tal que $|x_n| < K$ para toda $n \in \mathbb{N}$.
- **P 2.** Si (x_n) es acotada existe (y_k) subsucesión convergente de (x_n) .
- **P** 3. Si (x_n) es convergente entonces es acotada. Más aún si $\lim x_n \neq 0$ exite $N_0 \in \mathbb{N}$ tal que x_n y $\lim x_n$ tienen el mismo signo si $n \geq N_0$.
- **P** 4. $Si(x_n)$ es Cauchy entonces es acotada.
- **P 5.** Si (x_n) es Cauchy y existe (y_k) subsucesión convergente de (x_n) , entonces la sucesión original es convergente al mismo límite.
- **P 6.** Sea (x_n) creciente (decreciente). La sucesión (x_n) es convergente si y sólo si es acotada superiormente (inferiormente).
- **P** 7. Si (x_n) es convergente si y sólo si es Cauchy.
- **P 8.** Sea (x_n) sucesión de términos distintos de cero. $(|x_n|)$ diverge $a \infty$ si y sólo si $(1/x_n)$ es nula.
- **P** 9. (x_n) es convergente si y sólo si toda subsucesión (y_k) es convergente al mismo límite.
- **P 10.** (x_n) converge si y sólo si existe $k \in \mathbb{N}$ tal que la subsucesión $(x_n)_{n=k}^{\infty}$ es convergente.
- **P 11.** (x_n) convergente si y sólo si las subsucesiones (x_{2n}) y (x_{2n-1}) son convergente al mismo límite.
- **P 12.** Si (x_n) converge a α entonces $(|x_n|)$ converge a $|\alpha|$.
- **P 13.** (x_n) es nula si y sólo si $(|x_n|)$ es nula.
- **P 14.** Si (x_n) converge $a \alpha \neq 0$ y $x_n \neq 0$ para toda $n \in \mathbb{N}$ entonces $(1/x_n)$ es convergente a $1/\alpha$.
- **P 15.** Si (x_n) y (y_n) converges a α y β respectivamente, entonces
- $\lim(x_n \pm y_n) = \alpha \pm \beta$, $\lim cx_n = c\alpha$, $\lim(x_n y_n) = \alpha\beta$, $si(x_n)$ como en **P 14**, $\lim(y_n/x_n) = \beta/\alpha$
- **P 16.** Si lím $x_n = C \neq 0$ y lím $y_n = \infty$ entonces

$$\lim x_n y_n = \begin{cases} \infty & \text{si } C > 0\\ -\infty & \text{si } C < 0 \end{cases}$$

- **P 17.** Sean (x_n) y (y_n) son converges a α y β . Si existe $N \in \mathbb{N}$ tal que $x_n \leq y_n$ para $n \geq N$, entonces $\alpha \leq \beta$.
- **P 18.** Sean (x_n) y (y_n) son converges a α . Si existen $N \in \mathbb{N}$ y (z_n) tal que $x_n \leq z_n \leq y_n$ para $n \geq N$, entonces $\lim z_n = \alpha$.
- **P 19.** Sea (y_n) divergente $a \propto y(x_n)$ sucesión de reales. Si existen $N \in \mathbb{N}$ $y \in \mathbb{N}$
- **P 20.** Sean $a_i, b_j \in \mathbb{R}$ para $i = 1, 2, \dots, p$ $y = 1, 2, \dots, q$ con a_p y b_q distintos de cero. Defina las sucesiones (x_n) y (y_n) como $x_n = \sum_{i=0}^p a_i n^i$, e $y_n = \sum_{i=0}^q b_i n^i$, entonces

$$\lim \frac{x_n}{y_n} = \begin{cases} \frac{a_p}{b_q} & si \ p = q \\ 0 & si \ p < q \\ \infty & si \ p > q \ y \ a_p/b_q > 0 \\ -\infty & si \ p > q \ y \ a_p/b_q < 0 \end{cases}$$

- **P 21.** Sea (x_n) sucesión de términos positivos tal que $\alpha = \lim_{n \to \infty} x_{n+1}/x_n$ y $\beta = \lim_{n \to \infty} \sqrt[n]{x_n}$ estan bien definidos.
 - 1. Si $\alpha < 1$ ó $\beta < 1$ entonces (x_n) es nula.
 - 2. Si $\alpha > 1$ ó $\beta > 1$ entonces (x_n) es divergente $a \infty$.
- **P 22.** Sea (x_n) sucesión convergente a $\alpha \in \mathbb{R}$ y $f : \mathbb{R} \to \mathbb{R}$ continua en ξ , entonces $\lim f(x_n) = f(\alpha)$.
- **P 23.** Sea (x_n) succession divergente $a \infty y f : \mathbb{R} \to \mathbb{R}$ tal que $\lim_{x \to \infty} f(x) = \beta$, entonces $\lim f(x_n) = \beta$.
- **P 24.** Si (x_n) es nula $y(y_n)$ es acotada entonces (x_ny_n) es nula.